The effects of ionic liquid on the electrochemical sensing performance of graphene- and carbon nanotube-based electrodes.

نویسندگان

  • Chueh-Han Wang
  • Cheng-Hung Wu
  • Jia-Wun Wu
  • Ming-Tsung Lee
  • Jeng-Kuei Chang
  • Ming-Der Ger
  • Chia-Liang Sun
چکیده

The electrochemical sensing properties of graphene-based and carbon nanotube (CNT)-based electrodes towards ascorbic acid, dopamine, uric acid, and glucose are systematically compared. Nano-sized Pd catalyst particles are uniformly dispersed on both carbon supports using a supercritical fluid deposition technique to increase the sensing performance. The CNT/Pd electrode shows higher detection current than that of the graphene/Pd electrode, which is attributed to the three-dimensional architecture interwoven by the CNTs that creates a larger number of reaction sites. With the incorporation of ionic liquid (IL), the detection sensitivity of the IL/graphene/Pd electrode significantly increases, becoming noticeably higher than that of the IL/CNT/Pd counterpart. The synergistic interactions between graphene and IL that lead to the superior sensing performance are demonstrated and discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Electroanalytical sensing of Asulam based on nanocomposite modified glassy carbon electrode

In this study a facile approach to employ Copper nanoparticle (CuNPs) and multi-walled carbon nanotubes (MWCNT) as the nanomaterial for selective detection of asulam have been investigated. This work reports the electrocatalytic oxidation of asulam on glassy carbon electrodes (GCE) modified with multi-walled carbon nanotubes (MWCNT), ionic liquids (IL), chitosan (Chit) and copper nanoparticles ...

متن کامل

Electrocatalytic oxidation of ethanol on the surface of the POAP/ phosphoric acid-doped ionic liquid-functionalized graphene oxide nanocomposite film

In situ electropolymerization as a facile synthetic procedure has been used to obtain highly active compositesof ionic liquid functionalized graphene oxide(FGO)and poly ortho aminophenol (POAP). Surface and electrochemical analysis have been used for characterisation of FGO-POAP composite film. Nickel was accumulated by complex formation between Ni (II) in solution and amines sites in the polym...

متن کامل

Electrocatalytic oxidation of ethanol on the surface of the POAP/ phosphoric acid-doped ionic liquid-functionalized graphene oxide nanocomposite film

In situ electropolymerization as a facile synthetic procedure has been used to obtain highly active compositesof ionic liquid functionalized graphene oxide(FGO)and poly ortho aminophenol (POAP). Surface and electrochemical analysis have been used for characterisation of FGO-POAP composite film. Nickel was accumulated by complex formation between Ni (II) in solution and amines sites in the polym...

متن کامل

Electrochemical Oxidation of Flavonoids and Interaction with DNA on the Surface of Supramolecular Ionic Liquid Grafted on Graphene Modified Glassy Carbon Electrode

The study of the interaction between DNA and small molecules such as drugs is one of the current general interest and importance. In this paper, the electrochemical investigation of the interaction between some flavonoids such as rutin, quercetin, and hesperidin with dsDNA on the surface of Supramolecular Ionic Liquid grafted on the Graphene Oxide Modified Glassy Carbon Electrode (</s...

متن کامل

Fe3O4 Magnetic Nanoparticles/ Graphene Oxide Nanosheets/Carbon Cloth as an Electrochemical Sensing Platform

In this work, for eliminating the (RR1346), considered to be a waste in wastewater from dye industries electrochemical advanced oxidation process has been used. Graphene oxide coated carbon cloth (GO/CC) and Fe3O4 /GO coated carbon cloth (Fe3O4/GO/CC) electrodes has been fabricated by synthesized GO and Fe3O4 nanoparticles. Characteristic properties such as surface morphology as the main reason...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Analyst

دوره 138 2  شماره 

صفحات  -

تاریخ انتشار 2013